Géo- et cosmochimie
Gaz rares – azote – spectrométrie de masse – Lune – météorites – missions spatiales
CRPG UMR 7358 CNRS-UL
15 rue Notre Dame des Pauvres
54500 Vandœuvre les Nancy – Franc
Ma recherche se concentre sur l’origine et l’évolution des éléments légers (H, C, N) et des gaz rares sur Terre et dans le système solaire interne. J’utilise des techniques avancées, comme la spectrométrie de masse gaz rares et la microsonde ionique, pour analyser des météorites et des échantillons ramenés sur Terre par les missions spatiales, ainsi que des roches volcaniques terrestres. Des études expérimentales me fournissent des informations complémentaires sur l’effet de différents paramètres physico-chimiques sur la solubilité et le fractionnement isotopique de l’azote pendant la différenciation planétaire. Mes travaux décrivent la complexité des processus qui contrôlent les teneurs et les signatures isotopiques des éléments légers dans les roches naturelles.
- Depuis 2024 : Directrice de recherche (DR2) CNRS, CRPG
- 2022 : Habilitation à diriger les recherches
- 2014 – 2024 : Chargée de recherche CNRS, CRPG
- 2012 – 2014 : Postdoc (CNRS), CRPG
- 2010 – 2012 : Postdoc (CNES), CRPG
- 2004 – 2010 : PhD, Scripps Institution of Oceanography (UCSD) “New insights into the origin, transport and behavior of noble gases : Examples from Monterey Bay, Costa Rica, Iceland, and the Central Indian Ridge »
- 2004 : MSc ETH, Swiss Federal Institute of Technology (ETH) Zurich
- 2024 : EAG Science Innovation Award, Samuel Epstein medal
- 2024 : GS Geochemistry Fellow
- 2017 : CNRS bronze medal
ERC IRONIS – Light elements in irons and metal-rich meteorites: Their isotopic distribution and evolution in the protoplanetary disk (ERC-2022-COG, 2023-2028)
https://cordis.europa.eu/project/id/101087562
Knowledge of the light element (H, C, N) characteristics of planetary building blocks is key to our understanding of the development of habitable conditions on Earth. Since ‘magmatic’ iron meteorites originate from the metallic cores of the earliest, differentiated planetesimals, they may preserve a record of H, C, and N isotopic variations in the inner and outer solar system during the first stages of planetary accretion. Based on novel multi-light-element isotopic analyses of irons and other Fe-Ni alloy-rich meteorites and experimental simulations, project IRONIS aims to answer the fundamental questions of (i) how the distributions of H, C, and N (and their carrier phases) evolved in space and time within the earliest stages of the protoplanetary disk, and (ii) how H, C, and N were distributed between metals and silicates during planetesimal accretion, differentiation, and subsequent evolution. A major objective is to develop novel secondary ion mass spectrometry protocols for analyzing H, C, and N in situ in Fe-Ni alloy, and to combine these with ‘bulk’ N-noble gas analyses by static noble gas mass spectrometry. The originality and uniqueness of project IRONIS thus lies in the coupling of two state-of the-art analytical techniques, which allow the quantification of any solar gas and cosmogenic nuclide contributions. Only once the effects of these secondary components are understood, can spatiotemporal isotopic variations in the protoplanetary disk be investigated. In parallel, new cross-calibrated N analyses of experimental run products will provide constraints on the degree of N isotopic fractionation during alloy-silicate partitioning, and will permit us to assess if the N isotopic compositions of irons represent a primary feature of their parent bodies. Ultimately, by investigating the remnants of the first planetesimal populations, project IRONIS will provide new fundamental insights into the cosmochemical history and evolution of life-forming light elements.
ERC VOLATILIS – Origin of volatile elements in the inner Solar System (ERC-2016-STG, 2017-2022)
https://cordis.europa.eu/project/id/715028
The objective of project VOLATILIS is to investigate the origin(s) of volatile elements on Earth and other planetary bodies in the inner Solar System. Since primitive and differentiated asteroids, planetary embryos, and the Earth-Moon system represent different stages of planet formation, studies of chondritic meteorites and samples from Vesta, Mars, the Moon, and Earth can provide constraints on the evolution of planetary volatiles from primordial to present-day compositions. However, indigenous volatiles in extraterrestrial samples are often masked by solar and cosmogenic contributions. Only combined analyses of noble gases and other volatiles (N, H) allow the observed volatile signatures to be resolved into constituent components (atmospheric, solar, cosmogenic, indigenous). The Centre de Recherches Pétrographiques et Géochimiques (Nancy, France), the PI’s host institute, is the only laboratory that is equipped with static noble gas mass spectrometers for coupled N-noble analyses of small-sized samples, and with two secondary ionization mass spectrometers for non-destructive volatile element measurements. By coupling these high-precision analytical techniques, we will be able to reliably characterize indigenous planetary volatiles, and to assess the importance of volatile storage during primary accretion or late addition via comets and meteorites. Furthermore, we aim to develop the protocols for N isotope analysis by ion microprobe and by static mass spectrometry in multi-collection mode; these methods will allow us to target micron-sized samples (such as melt inclusions) for N analyses and to improve the analytical precision for coupled N-noble gas studies, respectively. The new data obtained here can be integrated as critical parameters into geochemical and astrophysical models of volatile accretion and fluxes in the inner Solar System, and they are expected to be of great interest to the geo-/cosmochemistry, astrophysics, and astrobiology communities.
Encadrement de thèses
- Arno Lastes (2024-2027): Étude des effets du métamorphisme thermique et de la différenciation partielle sur la teneur et la composition isotopique de l’azote de petits planétésimaux (co-direction: Sune Nielsen)
- Bouchaib Tibari (2024-2030): Calibrations absolues et relatives des taux de production de l’hélium 3 cosmogénique : nouveaux sites de calibration dans les zones géographiques sous documentées (Cap Vert, Sibérie, Himalaya, Groenland, Antarctique), et intercalibration avec les isotopes cosmogéniques du béryllium (10Bec) et du néon (21Nec) (co-direction: PH Blard)
- Julie Gamblin (2023-2026): L’azote dans les météorites riches en métal: Distribution et évolution de l’azote dans le disque protoplanétaire (co-direction: Béatrice Luais)
- Marine Joulaud (2021-2025): Caractérisation multi-échelle des régolites de la Lune et de Mercure par imagerie et modélisation numérique (co-direction: Pascal Allemand & Vincent Langlois, co-encadrement: Jessica Flahaut)
- Cécile Deligny (2018-2021): Chronologie et origine des éléments volatils dans le Système Solaire interne : Contraintes grâce à l’analyse in-situ des achondrites (co-direction: Etienne Deloule)
- Julien Boulliung (2017-2020) : Solibilité, diffusion et spéciation de l’azote dans les silicates fondus (co-direction: Yves Marrocchi)
2025
Bouvier, A., K.R. Bermingham, E. Füri (2025). Planetary materials: A record of early Solar System events to planetary processes. In: D. Weis and A. Anbar (eds.), Treatise on Geochemistry, 3e. vol. 7, pp. 203–256. UK: Elsevier. https://doi.org/10.1016/B978-0-323-99762-1.00137-6
Bekaert, D.V., M. Auro, K. Righter, L.D. Peterson, A.W. Heard, D. Davis, E. Füri, Y. Marrocchi, A.J. Irving, K. Prissel, K. Burton, C. Fitoussi, S.G. Nielsen (2025). Vanadium isotope fractionation during early planetary evolution: insights from achondrite analyses, Earth Planet. Sci. Lett., 652, 119202. https://doi.org/10.1016/j.epsl.2025.119202
Patzek. M., Y. Kadlag, M. Rüfenacht, E. Füri, A. Pack, A. Bischoff, H. Becker, R. Visser, T. John, M. Schönbächler (2025). Multi-isotope (N, O, Ti, Cr) study of C1 and CM-like clasts – probing unsampled C1 material. Meteorite Planet. Sci., 60, 1073–1094. https://doi.org/10.1111/maps.14343