Daout, S.; D’Agostino, N.; Pathier, E.; Socquet, A.; Lavé, J.; Doin, M.P.; Riesner, M.; Benedetti, L.

Tectonophysics, 2023, 867, 230076

Voir en ligne : https://doi.org/10.1016/j.tecto.2023.230076

Abstract :

In the Apennine Mountains of the Italian Peninsula, GPS data display 3–4 mm/yr of divergent motion oriented N50°E between the Adriatic and Tyrrhenian coastlines. However, the mechanisms driving this extension remain debated and along-strike variations of extension within the actively deforming belt remain poorly constrained. Here, we derived the first large-scale extensional and vertical velocity field for the Apennines by multi-temporal InSAR analysis of 7 years of Sentinel-1 data at the scale of the entire range, improving the spatial resolution and vertical accuracy of existing GPS measurements. The results reveal along-strike variations of extensional rates and gradients, with extension concentrated on single fault systems in the north, consistent with the loci of seismicity and recent moderate earthquakes, and distributed throughout the central Apennines, where the range is widening. Vertical surface displacements do not resolve any active long-wavelength uplift of the orogenic belt and, on average, show more subsidence than uplift relative to the Tyrrhenian and Adriatic coasts. This work provides the first InSAR-based geodetic map of differential extension and uplift within the Italian Peninsula. Our results are compatible with a pure shear extensional model of the crust, driven by both boundary and gravitational forces.